diamond

Sabtu, 06 Juni 2009




THE MINERAL DIAMOND

Diamond is the ultimate gemstone, having few weaknesses and many strengths. It is well known that Diamond is the hardest substance found in nature, but few people realize that Diamond is four times harder than the next hardest natural mineral, corundum (sapphire and ruby). But even as hard as it is, it is not impervious. Diamond has four directions of cleavage, meaning that if it receives a sharp blow in one of these directions it will cleave, or split. A skilled diamond setter and/or jeweler will prevent any of these directions from being in a position to be struck while mounted in a jewelry piece.

As a gemstone, Diamond's single flaw (perfect cleavage) is far outdistanced by the sum of its positive qualities. It has a broad color range, high refraction, high dispersion or fire, very low reactivity to chemicals, rarity, and of course, extreme hardness and durability. Diamond is the April Birthstone.

In terms of it's physical properties, diamond is the ultimate mineral in several ways:

  • Hardness: Diamond is a perfect "10", defining the top of the hardness scale, and by absolute measures four times harder than sapphire (which is #9 on that scale).
  • Clarity: Diamond is transparent over a larger range of wavelengths (from the ultraviolet into the far infrared) than is any other solid or liquid substance - nothing else even comes close.
  • Thermal Conductivity: Diamond conducts heat better than anything - five times better than the second best element, Silver!
  • Melting Point: Diamond has the highest melting point (3820 degrees Kelvin)
  • Lattice Density: The atoms of Diamond are packed closer together than are the atoms of any other substance
  • Tensile Strength: Diamond has the highest tensile strength of any material, at 2.8 gigapascals. However, that does not quite translate into the strongest rope or cable, as diamond has cleavage planes which support crack propagation. The strongest ropes can likely be made from another material, carbon nanotubes, as they should not suffer from the effects of cracks and break. Still, if a long, thin, perfect crystal of diamond could be manufactured, it would offer the highest possible pulling strength (in a straight line - don't try to tie it in a knot!)
  • Compressive Strength: Diamond was once thought to be the material most resistant to compression (the least compressible). It is the material that scientists use to create the greatest pressures when testing matter. However, the rare metal Osmium has recently been shown to be even less compressible (although it is not as hard as diamond). Diamond has a bulk modulus (reciprocal of compressibility) of 443 GigaPascals (GPa). The bulk modulus of the metal osmium has recently been found to be 476 GPa, about 7% greater than diamond.

Diamond is a polymorph of the element carbon. Graphite is another polymorph. The two share the same chemistry, carbon, but have very different structures and properties. Diamond is hard, Graphite is soft (the "lead" of a pencil). Diamond is an excellent electrical insulator, Graphite is a good conductor of electricity. Diamond is the ultimate abrasive, Graphite is a very good lubricant. Diamond is transparent, Graphite is opaque. Diamond crystallizes in the Isometric system and graphite crystallizes in the hexagonal system. Somewhat of a surprise is that at surface temperatures and pressures, Graphite is the stable form of carbon. In fact, all diamonds at or near the surface of the Earth are currently undergoing a transformation into Graphite. This reaction, fortunately, is extremely slow.

http://www.galleries.com/minerals/elements/diamond/diamond.htm


Rutile

Kamis, 04 Juni 2009


THE MINERAL RUTILE

  • Chemistry: TiO2, Titanium Oxide
  • Class: Oxides and Hydroxides
  • Group: Rutile
  • Uses: Ore of titanium, pigment and as an ornamental stone when in clear quartz

Rutile is an interesting, varied and important mineral. Rutile is a major ore of titanium, a metal used for high tech alloys because of its light weight, high strength and resistance to corrosion. Rutile is also unwittingly of major importance to the gemstone markets. It also forms its own interesting and beautiful mineral specimens.

Microscopic inclusions of rutile in quartz, tourmaline, ruby, sapphire and other gemstones, produces light effects such as cat's eye and asterisms (stars). A beautiful stone produced by large inclusions of golden rutile needles in clear quartz is called rutilated quartz. Rutilated quartz is sometimes used as a semi-precious stone and/or for carvings. This stone is produced because at high temperatures and pressure, n(SiO2)-n(TiO2) is in a stable state but as temperatures cool and pressure eases the two separate with rutile crystals trapped inside the quartz crystals.

Twinning is common in rutile crystals, with a cyclic twin forming that is comprised of six or even eight "twins" arranged in a circle. A Rutile Star is a formation of crystals of rutile in a six rayed orientation. The crystals grow off of a hematite crystal and the orientation is caused by its six rhombic faces.


physical characreristic
  • Color is black or reddish brown in large thick crystals or golden yellow or rusty yellow as inclusions or in thin crystals.
  • Luster is adamantine to submetallic.
  • Transparency: Crystals are transparent in rather thin crystals otherwise opaque.
  • Crystal System is tetragonal; 4/m 2/m 2/m
  • Crystal Habits include eight sided prisms and blocky crystals terminated by a blunt four sided or complex pyramid. The prisms are composed of two four sided prisms with one of the prisms being dominant. Crystals with some twins forming hexagonal or octahedral circles. A very common habit is thin acicular needles (especially as inclusions in other minerals) or as blades.
  • Cleavage is good in two directions forming prisms, poor in a third (basal).
  • Fracture is conchoidal to uneven.
  • Hardness is 6 - 6.5
  • Specific Gravity is 4.2+ (slightly heavy)
  • Streak is brown
  • Other Characteristics: Striations lengthwise on crystals, high refractive index (2.63) gives it a sparkle greater than diamond (2.42).
  • Associated Minerals are quartz, tourmaline, barite, hematite and other oxidessilicates. and
  • Notable Occurrences include Minas Gerias, Brazil; Swiss Alps; Arkansas, USA and some African locallities.
  • Best Field Indicators are crystal habit, streak, hardness, color and high index of refraction (luster).
http://www.galleries.com/Minerals/Oxides/RUTILE/RUTILE.htm

d block elements



http://chemistry.semo.edu/crawford/ch186/lectures/ch20/slide4.html

what are zeolites?


Zeolites are microporous crystalline solids with well-defined structures. Generally they contain silicon, aluminium and oxygen in their framework and cations, water and/or other molecules wthin their pores. Many occur naturally as minerals, and are extensively mined in many parts of the world. Others are synthetic, and are made commercially for specific uses, or produced by research scientists trying to understand more about their chemistry.

Because of their unique porous properties, zeolites are used in a variety of applications with a global market of several milliion tonnes per annum. In the western world, major uses are in petrochemical cracking, ion-exchange (water softening and purification), and in the separation and removal of gases and solvents. Other applications are in agriculture, animal husbandry and construction. They are often also referred to as molecular sieves.

Adsorption and Separation

The shape-selective properties of zeolites are also the basis for their use in molecular adsorption. The ability preferentially to adsorb certain molecules, while excluding others, has opened up a wide range of molecular sieving applications. Sometimes it is simply a matter of the size and shape of pores controlling access into the zeolite. In other cases different types of molecule enter the zeolite, but some diffuse through the channels more quickly, leaving others stuck behind, as in the purification of para-xylene by silicalite.

Cation-containing zeolites are extensively used as desiccants due to their high affinity for water, and also find application in gas separation, where molecules are differentiated on the basis of their electrostatic interactions with the metal ions. Conversely, hydrophobic silica zeolites preferentially absorb organic solvents. Zeolites can thus separate molecules based on differences of size, shape and polarity.

Ion Exchange

The loosely-bound nature of extra-framework metal ions (such as in zeolite NaA, right) means that they are often readily exchanged for other types of metal when in aqueous solution. This is exploited in a major way in water softening, where alkali metals such as sodium or potassium prefer to exchange out of the zeolite, being replaced by the "hard" calcium and magnesium ions from the water. Many commercial washing powders thus contain substantial amounts of zeolite. Commercial waste water containing heavy metals, and nuclear effluents containing radioactive isotopes can also be cleaned up using such zeolites.

the process of sea cave forming

A sea cave, also known as a littoral cave, is a type of cave formed primarily by the wave action of the sea. The primary process involved is erosion. Sea caves are found throughout the world, actively forming along present coastlines and as relict sea caves on former coastlines. In places like Thailand's Phang Nga Bay, solutional caves have been flooded by the rising sea and are now subject to littoral erosion.

Some of the best-known sea caves are European. Fingal's Cave, on the Scottish island of Staffa, is a spacious cave some 70 m long, formed in columnar basalt. The Blue Grotto of Capri, although smaller, is famous for the apparent luminescent quality of its water, imparted by light passing through openings underwater. The Romans built a stairway in its rear and a now-collapsed tunnel to the surface. The Greek islands are also noted for the variety and beauty of their sea caves. Numerous sea caves have been surveyed in England, Scotland, and in France, particularly on the Normandy coast. The largest sea caves are found along the west coast of the United States and in the Hawaiian islands.

Formation

Sea cave formation along a fault
Sea cave formation along a dike
Sea cave collapse
The "belvedere" watching place in the north Sardinia Nereo Cave

Littoral caves may be found in a wide variety of host rocks, ranging from sedimentary to metamorphic to igneous, but caves in the latter tend to be larger due to the greater strength of the host rock.

In order to form a sea cave, the host rock must first contain a weak zone. In metamorphic or igneous rock, this is typically either a fault as in the caves of the Channel Islands of California, or a dike as in the large sea caves of Kauai, Hawaii’s Na Pali Coast. In sedimentary rocks, this may be a bedding-plane parting or a contact between layers of different hardness. The latter may also occur in igneous rocks, such as in the caves on Santa Cruz Island, California, where waves have attacked the contact between the andesitic basalt and the agglomerate.

The driving force in littoral cave development is wave action. Erosion is ongoing anywhere that waves batter rocky coasts, but where sea cliffs contain zones of weakness, rock is removed at a greater rate along these zones. As the sea reaches into the fissures thus formed, they begin to widen and deepen due to the tremendous force exerted within a confined space, not only by direct action of the surf and any rock particles that it bears, but also by compression of air within. Blowholes (partially submerged caves that eject large sprays of sea water as waves retreat and allow rapid re-expansion of air compressed within), attest to this process. Adding to the hydraulic power of the waves is the abrasive force of suspended sand and rock. Most sea-cave walls are irregular and chunky, reflecting an erosional process where the rock is fractured piece by piece. However, some caves have portions where the walls are rounded and smoothed, typically floored with cobbles, and result from the swirling motion of these cobbles in the surf zone.

True littoral caves should not be confused with inland caves that have been intersected and revealed when a sea cliff line is eroded back, or with dissolutional voids formed in the littoral zone on tropical islands (see Speleogenesis: Coastal and Oceanic Settings). In some regions, such as Halong Bay, Vietnam, caves in carbonate rocks are found in littoral zones but were formed by dissolution.

Rainwater may also influence sea-cave formation. Carbonic and organic acids leached from the soil may assist in weakening rock within fissures. As in solutional caves, small speleothems may develop in sea caves.

Sea cave chambers sometimes collapse leaving a “littoral sinkhole”. These may be quite large, such as Oregon’s Devil’s Punchbowl or the Queen’s Bath on the Na Pali coast. Small peninsulas or headlands often have caves that cut completely through them, since they are subject to attack from both sides, and the collapse of a sea cave tunnel can leave a free-standing “sea stack” along the coast. The Californian island of Anacapa is thought to have been split into three islets by such a process.

Life within sea caves may assist in their enlargement as well. For example, sea urchins drill their way into the rock, and over successive generations may remove considerable bedrock from the floors and lower walls. You might not find a big variety of fishes.

[edit] Factors influencing size

Some sea caves empty out at low tide

Most sea caves are small in relation to other cave types. A current compilation of sea-cave surveys Long sea caves of the world shows three over 300 meters, 15 over 200 meters, and 85 over 100 meters in length. In Norway, several apparently relict sea caves exceed 300 meters in length. There is no doubt that many other large sea caves exist but have not been investigated due to their remote locations and/or hostile sea conditions.

Several factors contribute to the development of relatively large sea caves. The nature of the zone of weakness itself is surely a factor, although difficult to quantify. A more readily observed factor is the situation of the cave’s entrance relative to prevailing sea conditions. At Santa Cruz Island, the largest caves face into the prevailing northwest swell conditions—a factor which also makes them more difficult to survey. Caves in well-protected bays sheltered from prevailing seas and winds tend to be smaller, as are caves in areas where the seas tend to be calmer.

The type of host rock is important as well. All of the largest sea caves are in basalt,[citation needed] a strong host rock compared to sedimentary rock. Basaltic caves can penetrate far into cliffs where most of the surface erodes relatively slowly. In weaker rock, erosion along a weaker zone may not greatly outstrip that of the cliff face.

Time is another factor. The active littoral zone changes throughout geological time by an interplay between sea-level change and regional uplift. Recurrent ice ages during the Pleistocene have changed sea levels within a vertical range of some 200 meters. Significant sea caves have formed in the California Channel Islands that are now totally submerged by the rise in sea levels over the last 12 000 years. In regions of steady uplift, continual littoral erosion may produce sea caves of great height — Painted Cave is almost 40 m high at its entrance.

Finally, caves that are larger tend to be more complex. By far the majority of sea caves consist of a single passage or chamber. Those formed on faults tend to have canyon-like or angled passages that are very straight. In Seal Canyon Cave on Santa Cruz Island, entrance light is still visible from the back of the cave 189 m from the entrance. By contrast, caves formed along horizontal bedding planes tend to be wider with lower ceiling heights. In some areas, sea caves may have dry upper levels, lifted above the active littoral zone by regional uplift.

Sea caves can prove surprisingly complex where numerous zones of weakness—often faults—converge. In Catacombs Cave on Anacapa Island (California), at least six faults intersect. In several caves of the Californian Channel Islands, long fissure passages open up into large chambers beyond. This is invariably associated with intersection of a second fault oriented almost perpendicularly to that along the entrance passage.

http://en.wikipedia.org/wiki/Sea_cave